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NOMENCLATURE

Description

Shear stress parameter

Coefficients of (n)i in expansion of f
Coefficients of (n)i in expansion of g
Friction factor, ?/% T

Specific heat

Coefficients of (n)i in expansion of u
Nondimensional stream function

As in Rquation (51)

Nondimensional enthalpy

Heat transfer coefficient

Enthalpy

As in Equation (56)

Thermal conductivity

Reference length

Constant in Equation (&1)

Blowing parameter

Pressure

Prandtl number, Ep u/k

Universal gas constant

Reynolds number, UopoL/uo
Stanton number, h/CpopoU°
Temperature

Velocity

Components of local velocity in s and y directions,
respectively
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Description

Injection rate

Orthogonal coordinates

Wall enthalpy, Hw/He

Ratio of minor axis to major axis
As given in Equation (66)
Pressure gradient parameter
Viscosity

As in Equations (52) and (53)
Densicy

Stream function

Shear stress

“ransformed coordinates

Coolant conditions
Condition at the edge of the boundary layer

Reference conditions

Wall conditions
Based on local value of x
Differentiation with respect to &

Initial values

Superscripts

R A}

()° Differentiation with respect to n
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ABSTRACT

The study describes an analytical solution of the nonsimilar
laminar boundary layer with pressure gradient, variable wall tempera-
ture and continuous injection.

The method consists of transforming the partial differential
equations for momentum and enthalpy and then solving the transformed
equations by assuming polynomial stream function and enthalpy pro-
files. Solutions obtained show very good agreement with exact
numerical results.

The solutions are obtained for flows over wedges as well as
at the two-dimensional stagnation point and over curved surfaces
of a two-dimensional body in crossflow, The results of the study
show that the boundary layer is very strongly effected by the
injection mass flow rate.
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INTRODUCTION

The concepts of transpiration cooling with the accompanying
high efficiency is shielding a surface from severe thermal environ-
ment are well known and have been discussed at length in the litera-

ture. Critical temperatures and thermal environments are encountered

in combustion chambers, over gas turbine blades and near the nose

of a re-entry vehicle. Transpiration cooling perhaps finds its most
important applications in keeping these components at an acceptable
temperature.

The advantages of increased gas temperature on the performance
of a gas turbine are well known. ‘The increase in turbine entry
temperature causes an almost monotonic rise in efficiency and
specific power. On the other hand, this high temperature coupled
with excessive centrlfugal and gas bending stresses produce a
critical situation in the gas turbines, especially over the first
stage rotor blades. To insure efficient performance over a reason-
ably high lifetime makes the problem of blade cocling absolutely
necessary.

In a previous report(l), the authors have described an
analytical solution of the compressible laminar boundary layer
over a flat plate with continuous or local mass injection. There,
the authors showed that even a small injection rate (2% or less
of the main flow) is very effective in lowering the plate wall
temperature. Though high pressure gradients are present near the
stagnation point and over the rest of the turbine blade, similai
results are observed for this case also. For example, Gollnick 2)
showed -that transpiration cooling is sufficient for practical use
in cooling the a¥i§ymmetric stagnation region of a re-entry vehicle.
Goodwin and Howe showed that for relatively low mass flow rate
(0.1% to 1.0% of the main stream) the aerodynamic heating is
shielded to a great extent. These solutions, however, are based
on the principle of "similarity" and have to be viewed critically.
In the presence of 1nject10n, the boundar¥ layer is not likely
to be similar. Various authors have solved these non-
similar boundary layers using analytlcal or numerical techniques.,
These analytical solutions predict nonsimilar boundary layer
behavior well for uniform injection along a flat plate with con-
stant fluvid properties. However, these apprcaches breakdown in
the presence of pressure gradients.

This study is an extension of the previous work(l) and in-
cecrporates the presence of pressure gradients in the laminar flow
field. The report describes an analytical solution of the non-
similar laminar boundary layer with continuous injection and
variable wall temperature over a two~dimensional body in cross-
flow. The method, which consists of transforming the partial
differential equations of momentum and enthalpy and then soiving
them by assuning polynomial velocity and enthalpy pfofiles, is
similar to the one described in the previous report

N
ot

b
PP RPN TTIRRE TR

e




-

.o

N e 3
G T bt SR
AT L 5P ed whT A SR I

AL A SR T : s R R S

- 2 2

& e A N e Ay O S MR L T AT L
RS2 a2 %%‘ "‘W@% 1 ,g%zzivrz(q«! ,!»-: ‘4&%&9 2
St PR ST KT e ) e~ .13: N v =T

i ]
W vy

4‘:,«!

T

The aerodynamic performance of the heavily loaded turbine
blade necessitates that the mass flow rate of the coolant effusing
from the blade surface be kept as low as possible. First, the low,
transverse velocity of the, injected coolant will cause a decrease
in the kiretic energy of the mainstream through direct momentum
exchange. Second, as shown in the first report, the injection in
the laminar boundary layer makes the layer unstable and enhances
thetransition to turbulence. Consequently, the injection flow rate
is to be kept as low as possible. In this study,' the injection
rate is assumed 1% or less of the main flow rate near the stagna-
tion point and less than 5% over the rest of the body surface.

ANALYSIS

The equations of motion for a two~dimensional body in cross-
flow are:

Continuity;
_Gn + X W =0 (1)
X Y
Momentum;
pu 2245y & 3R, (A, (2)
X oY X oYy 3y
Energy;
-= 3H , -- 3H _ 8 .§ O8H , - 1, 1 %2
pu—_+pv—:=-—_-[l—,-f-—_-+u(l-ﬁ);--:-] (3)
X 3y 9y 3y ©dy

Here_i’. is assumed that the flow is subsonic. The total
enthalpy H is given hy

- - = -2
H=C_T+ u
p (4)
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] 'va#Prdndtl number (Pr)- is assumed to be unity, the energy
-, equation reduces to )

-

on R4 5p A g 3 - . (5)
X - oy oY

These equations are then nondimensionalized by introducing the

expressions
_X _ v - oA = e m
X=Z, y=-VRe, u u/Uo, V=V /iz'e.o/uo,
L L
=5/, T = T/T =5/5. U2 = 3/%
P plogr - o’ p P Py Yo ¢ ¥ VAN
C_ = H = H/H 6
P P/ Po’ /8, (6)
Here
Reo =p Uo L/po (7)
The equations of motion then reduce to
d 3 _
5% (Pu) *+ 55 (V) =0 (8)
au du _ _3p 48,3
oH oH _ 3, 23H
U OV g = 5y (u ay) (10)

&=n

At the edge of the boundary layer, the pressure gradient is
written as

L2

sp du_
i T 3x - Pe Ye 3% (11)
It
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and the various thermodynamic and transport variables reduce to

i .2
r _H73%
T 1.2
e H3 3 1,
u _T Pe _ T
= I , e_ I
Ye Te e Te

Here a linear viscosity-temperature relationship is assumed.

It is convenient at this point to introduce the Lees-Dorodnitsyn

transformation of coordinates.
X

£ = é baHala dx

and .

©

eue

413

=]
]
0 -

pe

The stream function ¢ is defined as

™ pv and 5y pu

and is assumed to have the form

¥ = Y2 £(&,n)

From Equations (14), (15) and (16)

L = f! (E,n)
e

o

where ( )' denotes differentiation with respect to n

(12)

(13)

(14)

(15)

(16)

(17)
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(18)
the transformed fundamental equations obtained from ﬁhe
above relations are now written as .
1ty L - rE Q_f_,'_ (] 2_‘; - 42 ;
£ + f££f Zg[f 5E £ ag] + Afg £19) (19)
H ' .
and ' ‘ , :
L | I = 1 _Bj - ] ?__f_ ' ' *
g'' + fg 28 [£' 37 g' 3t 1(20)
1 i '
where ‘ i ‘
du 1
ZE e 1
A = - e - (21)
ue dg
| i
BOUNDARY' CONDITIONS
The boundary conditions in the thSical plane are
- | |
a=0 1
=0 ov), = Y = constant . |
Y L ‘ |
k == (pv) C_ (T - T)) o (22)
S w p w c :
{ = !
_ u=1=0U ‘ :
y -> © ¢ _ -e R
\T = Te | (23)

Third condition of Equation (22) means that all the hecat
transferred from the hot gas goes to increase the coolant temp-
erature to the exit wall temperature. In terms of the trans-
formed variables, these boundary conditions reduce to,
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g=1 (25)

The second condition of Equation (24) is derived from the
definition of the stream functions, Equations (15) and (16).
For flow cver wedges where the pressure gradient (i) is constant,
Us . Ccan be written as an explicit function of &. In that case,
the value of fy can be obtained as an explicit function of &£.
However, for flow over curved surfaces, pressure gradient varies
with the downstream distance and hence it is much easier to obtain
the value of fy, at each point () by numerically carrying out the
integration up to that location.

SOLUTION OF THE NONSIMILAR EQUATIONS

The solution of the nonsimilar Equations (19) and (20) is
obtained in a manner analogous to that described in the previous
report 1). The modified stream, and the enthalpy function are
expanded in terms of polynomials of n:

' ! l 9 an
f=N+ I -2 (26)
n=l n.
) v bnﬂn
g = gw + nil n! (27)

where an and bn are functions of & only.

From previous work(l)'(7) it was realized that to obtain a
reasonably good accuracy near the two-dimensional stagnation point
(A = - 1.0), it is necessary to include at least 10 terms in the
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stream function. It was also observed(7) that the momentum equation
is much more sensitive and unstable than the energy equation. Con-
sequently, terms up to n8 are included in the momentum equation
while energy equations retain terms only up to n®.

If all the terms present in the coefficients of powers of n
are retained, the solution becomes very lengthy and cumbersome.
Hence, an order of magnitude analysis is necessary to retain only
the most significant terms.

From the boundary conditions at n = 0 and from direct dif-
ferentiation of the Eguations (26) and (27) it follows

a; = 0 ‘ {28)
N = fw ’ (29)
= 99
bl an (30)
n=0

Again, following the procedure described for the flat plate
solution, the unknown coefficients a3, a4; by, b3 etc. are obtained
in terms of a», N and gy by substituting Equations (26) and (27)
into Equations (19) and (20) and matching the coefficient of powers
of n.

Since the injection mass flow rate is kept 1% or less (of
the main flow), the absolute value of N, especially near the
stagnation point turns out to be always less than 0.7. In that
case, the contribution of all terms involving N in a7, ag, ag
and bg and bg is quite small as compared to the contribution of
the terms present in ap; to ag and by to bg. Hence all terms
involving N are neglected in the expression of ay, ag, ag, bg
and b7. Again, only first and second order terms in N are re-
tained in ag and bg. Also, since the values of ¢ da/dg, & dgy,/dg,
g dN/dg, by etc. are the same order of magnitude (or less) as N,
the same assumptions are applied to these terms or a produzt of
these terms. These assumptions greatly simplify the final solution.
Further comments on these assumptions are made in later chapters.

The various coefficients are obtained as

a, = a = unknown (31)

)]
]

- Na -~ 2¢ a(N)g + A o (32)
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2, .2 ‘
4€aN(N)g + 4t a(N)g Nia + bll Zgla(ﬁ)g

(33)

Na - 6gaN2(N)g - 1zg2aN(N)§ - a%+ 23(a), - 8£3a(N)2

NA + 4EAGN(N), - 27a% - 20,3 (W), + b0

1 2

+ 452“(1\1)g (34)

- NaS

- 4a.a + Ab. - 6Aaa3 - 2g(N)Ea5 + 4ga(a3)E

3 3
(35)

Neglecting all terms of the order of N3 or higher and sub- {

stituting the values of ayr ag, b3, etc.

+

<+

2
1

4dara +

lGAaZE(N)E - 6)%a0 + 4gac(A), + 6agd(a),

2 azw)g - saza(a)g(m (36)

2
- Na6 - 7aa4 - 4(a3) + Ab

This reduces to

a

7

4
6€a(a4)E - 2£a4(a)E + 2€a3(a3)E - 2‘c:a6(N)E (37)
|
- 8ab;x - 0%? - 62%° - 8afap, (38)

3N%b, A + 5Na’ + 8iNal - 6gal (a), + 12Ab)NE(N)

2

2 2 2
Zgax(a)E + 12¢ blx(N)E 4t a(N)g(a)E

g

2
- 6}(a3) - 8Aaa4
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Similarly, expressions for ag and a, are

9
ag = - lGAzbla + 32a3% + 202322 + 1123 - 2ox3bla (39)
ag = 90a2ra + 2261%a%q - 16b12A2 - 20b1213 + 13223a%¢ (40)
=g, (41)
= 99
by = 39 (42)
n=0
b, = = Nby = 2£by (N) (43)
b, = N?‘b + 4&Nb, (N) . + 2a{a) &+ 4£2b (N)2 (44)
3 1 1M, £ 1We
b = - ab. - N3b. - 6N%b. (N) £~ 4£Na(a)
4 1 1 1N £
- 12e%Nb, (nF, + 4Ea(by), - 8E2ala), (N) (45)
1 E 17¢g £ £
- 2tb. (a), - 8&%b, ()3 + 2£ra(a) (46)
1l £ 1 £
by = 5abjN - 16zaN(b)), - 4ENAafa) o = Aeby
+ 10gb N (a) + l4gaby (), + 6Era(by),
- 16620 (a), (N), - 48E2a(b,), (N), + 28£%(a) b, (N)
e e e 21 W
- 2ebya(n) + (a)g{ﬁgNza + 56£3a(N)§ + 4052aN(N)g}
(47)
Similarly,
2
bs = = by %) (48)
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1lb.,a” + 2blxa (49)

1

All other terms in b. and b7 are small in comparison to the above
terms and are neglected.

The momentum equation, after first integration is written as

£r T w(gm) (50)

n
F=/£f ady (51)
(o)

and

. .
w(Em) = [26(E'(E"), = £7(£) .} + (g - £2); ef an + a
o]

(52)
Now w(&,n) is expanded in terms of powers of n as
© dnn
n
w(gm) =3 = (53)
o 0

Equations (26) and (53) together with the well known expansion
of the exponent

2
= 4 —m—————-----—- etc. (54)

1
o
I"rJ

e =1-F+

N

are then substituted into Equation (50). Again, matching the
coefficients of powers of n gives the coefficients "d " in terms
of a, a and N.

A second integration reduces Equation (50) to

n o_p ° d
£'(gm) =/ e (I =) an (55)
o o}
10
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As shown elsewhe
n

£'(gm) =[S e
o

Here the right hand s

1)

{
re'

, this equation can be written as

an_. g
(£ Ia") dn (55)
n=0

3
6

ide 1is expanded up to the eighth power of n.

In are functions of dn and hence functions of a, ¢« and N,

By setting the upper limit to n = « gives the left hand side

as

£'(g,=) = 1.0

(57)

(This follows trom the remaining boundary condition.) Thus, when
the integration is performed and the numerical values of the Gamma

functions substituted
is obtained as

2/3 1
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£
1
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» the final solution of the momentum equation
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uhere C, = 1.623, C = 1.493, Cp = 2.0, C3 = 3.234, C4 = 3.73,
cg = 1220, C; = 25.92, C, ='59.6 and Cg = 144.0.

As shcown by Meksyn( ), the solution of the momantum equation,
Equation (58), may or may not be convergent depending on the number
of terms involved and the value of A. Setting N = (N)g = (a) = (“)g =0
and o« = 1, it is possible to evaluate the values of "a" for varlous
values of A. These values are presented in Table I.

w3
1

Table I

Values of Shear Stress Parameter as a Function of A (from Equation (58))

A aLt apr apr
Literature without Euler with Euler
Values Transformation Pransformation
-1.0 1.232 1.31 1.234
-0.5 0.927 0.94 0.933
-0.2 0.687 0.696 0.694
-0.1 0.587 0.592 0.588
0 0.47 0.48 0.481

Comparing the values of a (without Euler transformation from
. Table I and from previous work fl),(7) at » - 1.0, it is evident
4 that at that point the solution is very slowly converging.

I Meksyn(s) has shown that this is due to the limited radius of
convergence of Equation (53). To improve the convergence, Meksyn
applies the Euler Transformation.

s
)

t 12
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It is necessary to realize that the expression for w{i,sn),
Equation (52) itself, is convergent. It is the transformed series,
Equation (53) that is very slowly coanverging. As shown by Euler,
the sum of this very slowly converging series is the finite numerical
value of the convergent expression, Equation (52). A detailed ac- 9)
count of the Euler transformation is given by Bromwich and Macrobert ‘
Hardy(lo) and Knopp(ll). Applying Euler transformation to the present
solution, the values of the coefficients become Co = 1.621, C; = 1.464,
Cy = 1.82, C3 = 2.41, C4 = 2.98, C5 = 3.05, Cg = 2.33, C7 = 1.163 and
Cg = 0.281. Substituting these values in Equation (58) and again
setting N = (N), = (a)g = (a)y, = 0 and o = 1, the values of "a" as
as a function o% A are’re~evaluated. These values are also shown in

Table I. These values of "a" obtained with Euler transformation
agree extremely well with the literature values.

In any case, from Table I, it can be concluded that the Euler
transformation gives significant improvements only for high values
of X\, i.e., near » = -1.0. For cases where ) lies betveen A = 0
and A = ~0.7, the solution of the momentum Equation (58), is con-
vergent and the improvement caused by the Euler transformation is
small.

As will be seen later, final solution of the momentum equation
is obtained with, as well as, without the Euler transformation.
Comparison between these two solutions is made in the chaptexr "Results
and Discussion'.

Solution of the energy equation is obtained along similar
lines, with the final solution being

THOME a1/3[1.659b. + 0.072b. 2 - 6. 476NE (a)

1 1

4.3125% (o) (W), + 5.036€ (b)) ]

+a 23 30 + Ele) (14987 + 89450 (N)

-+

13.9252(N)§) - 31.9282(b.) . (N) . - 2.986Eb) (W), - 1.245Nb

VM, 1

+

-1 2 2 2
0.496€blA(N)g] + a “[4¢ bl(N)E + 4€Nbl(N)g + blN ]

v a2 s100ga (a) - 2.58900) (a) 1+ @7/ 1-0.2480b  +2.4326W5) (a)

1 3

1

2 2 .
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(59)
Regardless cf the number of terms involved oxr the value of i,
Equation (59) will always give ¢« = 1.9 at the stagnation point

for N = 0. Hence, Euler transformation is not applied to the
solution of the energy equation.

Conditions at the Stagnation Point

To solve the Equaticas (58) and (59) simultaneously it is
necessary to have the initial values of "a" and o i.e., aj, and
ain. These initial values are also stagnation point values. There
are two sets of stagnation point values depending on the mode of
injection.

(1) If the injection is assumed to occur from x > 0, the stag-
nation vaiues of a are the same as those given in Table II, i.e.,
for A= - 1.0,

ain = 1.234 (with Euler transformation)

a, = 1.31 (without Euler transformation)
and

®in = 1.0

(ii) If the injection is assumed to occur at the stagnation
point, the problem can be resolved as follows.

Very near the stagnation point, the velocity outside the
boundary layer of a two-dimensional body in crossflow can be
written as

Ue = X (60)

where £ 1s a constant.

For a two-dimensional elliptic cylinder in crossflow,

R (61)
4
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where A is the ratio of minor axis to major axis. From the
definition of ¢, and Equation (60),

2
£ =5 x° (62)

Again, for very small values of 5, tda/dg, &de/df and
gdN/dg are neglected. Then,

e
£ = - w‘/—i-‘l =N (63)

Equation (63) then gives the stagnation value of N. The
stagnation point values of "a" and o can now be obtained from
simultaneous solution of Equations (58) and (59) using Equations
(60) and (63). As mentioned above, &da/dg, ida/dE, £dr/dE and
£dN/d¢ are omitted. Under these assumptions, the solution reduces
to “similar sclution". However, at the stagnation point the value
of £ » 0 and the nonsimilar terms tend to drop out.

Since the factor £,;(N) incorporates thc main flow rate, body
geometry and the injection flow rate, the stagnation pecint solutions
obtained with this factor as a parameter would constitute a very
"general" solution. That is, such solutions would apply to any
two~-dimensional body in crossflow. The stagnation point values are
given in Table II.

Table II
A -fw a (1 - a}/(1,~-'jc)
-1.0 0.0707 1.16 0.113
-1.0 0.212 1.02 0.299
-1.0 0.354 0.885 0.456
-1.0 0.707 0.556 0.783

Once the wvalue of "a" and of a has been determined, the
friction factor and the heat transfer coefficient are obtained
directly as

c YRe/2 = a (64)

fe
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NUMERICAL COMPUTATIONS

Equations (58) and (59) are first order differential equations
and can be solved by any well known integration technique. Both

equations involve the unknowns "a" and a and hence have to be solved

simultaneously.

The continuous blowing at the wall gives rise to continuous
boundary conditions. These equations therefore are very easily
solved on CSMP (Continuous Systems Modeling Program). Numerical
answers are obtained using fourth order Runge-~Kutta, fixed-step
integration technique. The step size used was Af = 0.0001. To
test the stability, this solution was compared with the answers
obtained using rectangular Simpson's and Adam's method of integra-
tion (all the above techniques are available cn CSMP). The answers
obtained by all these techniques were within 0.5%.

The starting values of "a", i.e., ajp, are those given in
Table I. For the flow near the stagnation point, the "in" wvalue
of "a" could be that given in Tuable I or II depending on the mode
of injection. Same is true for the initial value of a. For wedge
flows, the solution is carried out up to x = 0.9 ft. - or until
the value of "a" dropped below 0.02. For the 4:1 elliptic cylinder,
the solution is obtained only over the front half while for the
experimental airfoil, the solution covers the entire surface,
suction and pressure. Any time the solution gave the value of "a"
below 0.02, the computations were stopped. At this low value of
the shear stress parameter the boundary layer is very thick and

unstable and the prandtl boundary layer assumptions are no longer
valid.

The numerical calculations were carried out for the following
values of the variables:
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Table III
Variable Values Flow Type
A . =01, 0.2
w 0.005, 0.01, 0.02, 0.05
U, 200 ft/sec Wedge Fiow
'I'o . 2460 °R
Tc 530 °R
Re 10°/£¢
o
A -loo to 0.0
w 0.001, 0.005
- Flow Over a 4:1
Uo 800 ft/sec (Major Axis: Minor
7 o Axis) Elliptic
To 2450 °R Cylinder
m o
Tc 530 °R
Reo 105 (based on half the
major axis)
A -1.0 to 0.023
gg w 0.001, 0,002
4 -
UO 142.8 ft/sec Flow Over
- Airfoil
% T 2460 °R
: o)
m )
g Tc 530 °R
Re 625000 (based on chord
° length)
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RESULTS AND DISCUSSION

To suppliment the present analysis, the answers obtained from
Equations (58) and (59) are compared with the numerical computer
solution of Equati?ns (19) and (20). This program was developed
by Davis and Werle The program is extremely versatile and
gives solutions for:

l. Any Mach number, i.e., subsonic or supersocnic;
2. Any Prandtl number; and
3. Any pressure gradient.

The program uses a much more realistic viscosity - temperature
relationship given by Sutherland formula, than the linear relation-
ship used in the analytical solution. It can be shown (see “"Proposals
for Further Research") that if the more realistic p a T0-75 relation-
ship between viscosity and temperature is used, the solution of the
momentum and energy equations would be slightly different.

Since "a" is a strong function of viscosity, the differences
between the values of "a" obtained from the analytical solution and
those obtained from the numerical solution (computer program) are
likely to be more severe than the differences between the two values
of the wall temperature. Also in the computation of Stanton number,
due to the presence of the factor (1 - o) in the denominator, the
differences between the two values of Stanton number are magnified.

Flow Over Wedges

The effects of uniform blowing on the wall temperature,
local heat transfer (in the form of Stanton number) and local
shear stress parameter for flow over wedges are shown in Figures
2 thorugh 7 (Figure 8 shows the velocity distribution over these
wedges). Solutions are presented for ten-fold variation in the
injection rate from w = 0.005 to w = 0.05. "As to be expected,
as the coolant injection rate increases, the wall temperature
and the shear stress at the wall both decrease. With i .creasing
distance from the leading edge, the wall temperature approaches
coolant temperature (Tc) and the shear stress approaches zero
(blown-off boundary layer). At the leading edge, the temperature
gradient is infinite (see Figures 2 and 5). This is due to the
fact that in the present analysis the thermal conductivity of the
wall has been neglected.

Comparison between the analytical values and numberical
computer values of the wall temperatures is very good. For shear
stress parameter, the numerical solution predicts a much steeper
gradient than the analytical solution (for small values of x) and
a more gentle one for large values of x. Agreement improves as the
injection rate increases.,

18
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Flow at the Stagnation Point and Over the Surface 6f a Two-Dimensional
Body 1in Crossilow i : .

Effect of coolant injection through a porous wall of 4:1
(ratio of major axis to minor axis) elliptic cylinder is shown
in Figures 9, 1CG and 11. The velocity distribution and the pres-
R sure gradient parameter 2 over this cylinder are given in Figure 12.
% This figure also shows the contour of the elliptic cylinder. The
geometric parameters of the cylinder are '

. s 2
e =1 - [Mlnor aalS]

Major axis . {€6)
5 U, = {1+ 8) sin (e) / /i - € 'cos‘2 (9) ' (67) ‘ o
} where
_ Minor axis (68) ;

" Major axis

and 8 is the angle measured in radians from the front stagnation
point.

 J—— DU B

AT A T
DA G LT

6
x =/ J1-ccos® (9) do (69)
o

ALREETL
L

These values were obtained from Evans(l3)(the reference
length is (Major axis)/2).

Er

e AL A 4, e e N,
VAT SO\ Ao

Agreement between the numerical and analytical values is very '
good. Analytical solution is presented with and without Euler
transformation. As far as the wall temperature distribution is
concerned, (Figure 9), the Euler transformation does not make much
difference. However, for the shear stress parameter, the solution
obtained with the Euler transformation agrees much better with the
computer answers than that obtained without Euler transformation.
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The agreement between the analytical and numerical solutions
- clearly support the validity of the assumptions made earlier. It
was assumed that for small absolute values of N(|N| < 0.7), terms
involving higher powers of N (e.g., N2, (¢ dN/d£)2 etc.) could be
neclected for the coefficients of n-2?, n°, n/ and n°. (In fact,
for n’/ and n8 all terms involving N are negligible.) Ve_.y good

. agreement between the numerical and analytical values shows that
the contribution by these terms is indeed small enough to be
neglected.

It is necessary to realize that this assumption is valid only
- (1) for small injection flow rates (which are likely to be en-
’ couniered in the turbine klade cooling,; and (ii) near the front
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stagnation point.

Near the stagnation point, A is of the order of -1.0 and N
is at least_one order_of magnitude lesser. Consequently, the terms
‘involving N2, [E(N)gl2 etc. are very small. Away from the stagna-
tion point {(i.e., with increasing x), the absolute value of )
decreases while that of N increases. TDownstream from the crossover
point (this is the value of x when {1l = IN!}), the contribution of
higher order N-terms becomes important. Fortunately for most any
two-dimensional body in crossilow for small injection rates, this
crossover point will occur far enough downstream from the stagnation
point such that the contribution by the n5 or higher terms (of the
series) will be small enough to be neglected. Hence, the validity
of the assumptions will hold for all values of x.

As mentioned in the chapter on the stagnation point solution,
the initial conditions for the stagnation flow depend on the mode
of injection. If the injection starts for x > 0, the initial
values are:

a, = 1.234 (with Euler transformation)

a. =1.0
in

If, however, the injection is assumed to initiate from x = 0,

the initial conditions are the values given in Table II. These
values are also presented in Figures 13 and 14. Figure 13 also
shows the stagnation point temperature obtained by other investi-
galors. The present analysis predicts slightly lower values of
the stagnation point temperature throughcut the range of injection
considered (w = 0.001 to 2 = 0.01). The solution is valid for a»vy
two-dimensional body in crossflow provided the value of N at the
stagnation point does not exceed (in the negative sense) =~1.0.

Solutions of the wall temperature and *he shear stress for
the 4:1 elliptic cylinder with the initizil values obtained from
Table II (i.e., stagnation values) are also presented in Fig-
ures Y and 11. In all cases, the solutions quickly merge with
the one obtained with the initial values from Table I.

Flow Over an Airfoil

The stagnation point analysis is also applied to the flow over
an airfoil (shown in Figure 15). The experimental velocity distri-

bution over the airfoil was obtained by M. Hussein and W. Tabakoff(l4).

Readings were taken at the room temperature, with Uy = 142.6 ft/sec
and Reynolds number (based on chord length) = 625,000. The values

of » and dx/d¢ were calculated from Figure 16 (which gives the velocity

distribution over the suction and the pressure side of the airfoil).
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igures 17 through 22 show the wall tempt rature distribution, heat
transfer and the friction factor (instead of shear stress parameter)
over the suction side and pressure side of the airfoil for w = 0.001
and w = 0.002. 2s before, blowing is very effectiwve in lowering the
airfoil surface temperature but at the same time it induces instability
which may result either in transition to turbulence or laminar biow-~

£e
OZr.

Effect of Inclusion of Higher Order Terms in n on the Flat Plate
aad Wedge Flows

To find the effect of inclusion of higher order terms, i.e.,
Eguations (58) and (59) on flat plate (Reference 1) and wedge flows,
these equations (Eguations (58) and (59)) are again solved for
=0, A =-0.1 and X = -0.2. Other parameters are the same as
those given in Table IXII. Solutions with and without Euler irans-~
formation are presented for w = 0.01 in Figures 23 through 25.
Surprisingly, the assumptions made in derivation of Equation (58)
and Eguation (59) are more critical for wedge flows.

For values of )X of the order ofi X = to A = -0.%, Tne con-
tribution due tc the terms n° or higher in the series expansions
is guite small. The assumptions then are not critical. The
solutions (w_<th as well as without Euler transformation) show
that as the number of terms in the series are increased, the
agreement between numerical and the analytical results improve.
The two solutions agree very well.

As the absolute value of X increases, i.e., A = ~0.2 say, the
contribution by the higher order terms in the series becomes
important. For the wedge flows X 1is constant, independent of the
downstream distance. Even for small values of x, the value of N
here is comparible to that of X . Here the crossover point occurs
much nearex the leading edge than in the case of a two-dimensional
body in crossflow. Consequently, results of Equations (58) and
(59) show larger deviation from the numerical values for » = -0.2.

For e flat plate and wedge flow solutions also the results
with Euler transformation are slichtly better than *hose withcut
Euler transformation. For the flat plate, the values of the wall
temperature and the shear stress obtained with or without the trans-
formation are so close that within the scale of the graph, they
could hardly be differentiated.

Bour.dz_y Lzverx Blow~-Qff

s rmenticned hefore, when the shear stress parameter drops to

a very lcow vilue (below 0.02) the boundary layer becomes unstable.
In the »rescent analvsis, the sclution of tha eguations is terminated
when tane value of "a" reaches very low values (0.02 to 0.01). Th
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theory cdoes not give satisfactory answer as to whether the
boundary laver wili undergo transition to turbulent boundary
r will get blown oif when shear drops to very low values. A
e thorough investigation is necessary to evaluate the eifect of
tion on laminar boundary layer stability.
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CONCLUSIONS

An analvticeal solution for compressible laminar boundary layer
with continuous mass injection was derived. Here the previous work (1)
is extended such that the solution is valid for any pressure gradient
including the stagnation point; for subsonic flows with a Prandtl
number of one and for a linear viscosity-temperature relationship.
The method, however, can be broadened to consider hich Mach numbers
and real representation of Prandtl number and viscosity temperature
variation. Numerical examples for the wall temperature and shear
stress were obtained for continuous injection and the values compared
with exact computer solutions. Very good agreement between the two
values of wall temperature was realized. The agreement in the shear
stress values is fair.

The following general conclusions are drawvn:

(i) For transpiration cooling, the wall temperature falls
rapidly with increasing injection mass flow rate and the tempera-
ture gradient is infinite at the leading edge.

(ii) Injection of the coolant into the boundary layer makes
the layer unstable. This is most likely to cause early transition
from laminar to turbulent boundary laver.

iii) V¥hen the shear stress parameter "a" drops below 0.02,
the soluticn becomes unstable.

(iv) In cooling a turbine blade by transpiration cooling
method, an injection rate of 0.5% of the main flow is sufficient
to maintain cthe blade temperature below 65% of the mainstream
temperxature.

(v) Injection of mass into the laminar boundary layer causes
instabilities in the boundary layver and may result either in transition
to turbulent boundary layer or laminar blow-off. Further investigation
is necessary to study these phenomena.
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Explanation Of Symbols Used In The Figures

w Remarks

k- L 0 . O 0.001 Each symbol in the figure
ke O 0.002 represents a data point obtain-
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